ASSESSING THE TOXICITY AND BIOAVAILABILITY OF 2,4-DINITROANISOLE IN ACUTE AND SUB-CHRONIC EXPOSURES USING THE EARTHWORM, EISENIA FETIDA

Jessica G. Coleman

Research Biologist

US Army Engineer Research and

Development Center

Vicksburg, MS

US Army Corps of Engineers
BUILDING STRONG
®

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE JUN 2010	2. REPORT TYPE			3. DATES COVERED 00-00-2010 to 00-00-2010				
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER			
Assessing the Toxicity and Bioavailability of 2,4-Dinitroanisole in Acute and Sub-Chronic Exposures Using the Earthworm, Eisenia Fetida					5b. GRANT NUMBER			
					5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)					5d. PROJECT NUMBER			
					5e. TASK NUMBER			
					5f. WORK UNIT NUMBER			
Army Engineer Re	ZATION NAME(S) AND AE search and Develop Ialls Ferry Road Wa MS,39180-6199	ment Center,Enviro		8. PERFORMING REPORT NUMB	G ORGANIZATION ER			
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	10. SPONSOR/MONITOR'S ACRONYM(S)						
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited						
13. SUPPLEMENTARY NO Presented at the Ni held 14-17 June 20	DIA Environment, I	Energy Security & S	ustainability (E2	S2) Symposi	um & Exhibition			
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFICATION OF: 17. LIM				18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 24	RESPONSIBLE PERSON			

Report Documentation Page

Form Approved OMB No. 0704-0188

Project Team

- Sandra M. Brasfield- Research Biologist
- Frances C. Hill- Research Chemist
- Choo Y. Ang- Cell Biologist
- Jeffery A. Steevens- Research Toxicologist
- Ganna Gry'nova- Student, Jackson State University
- Robert Boyd- Research Assistant

This work was supported by the Army's Environmental Quality Technology Basic Research Program

Overview

- The Army currently produces and employs 2,4,6-trinitrotoluene (TNT) in traditional munitions, but is facing a mandate to replace TNT with less sensitive and less toxic compounds
- 2,4-dinitroanisole (DNAN) is currently being tested by the DOD
- Hypothesis: DNAN will exhibit a similar mechanism of action, but reduced toxicity relative to the closely related compounds, DNT and DNP
- Preliminary results obtained through acute and sub-chronic terrestrial studies suggest that DNAN is less toxic relative to TNT

2,4-Dinitroanisole

- Not a new entergetic → use in Amatol 40 (50% DNAN, 35% ammonium nitrate, 15% RDX) in the warhead of some V-1 flying bombs during World War II
- Gained popularity because of scarcity of TNT
- 10% reduction in explosive impact
- Little information exists on the environmental risk of DNAN, driving a need for further research in this area

Assessing the Environmental Toxicity of DNAN

- Terrestrial ecosystems likely impacted due to munitions deployment over land
- Chose the earthworm Eisenia fetida as the terrestrial receptor
- Investigated multiple acute and subchronic exposure pathways:
 - ► Acute 72 hr dermal toxicity studies
 - Acute 7 day range finder soil studies
 - ► Sub-chronic 28 day soil studies
 - Cellular toxicity endpoints coupled with exposures through *in vitro* Neutral Red Based Toxicology Assay (NRRT)

Dermal Filter Paper Exposure

Toxicity/
Bioaccumulation

Cellular Stress NRRT

- OECD Guideline 207 (1984)
- Duration: 72 Hours, n=10
- Treatments: DNAN and TNT dissolved in 100% methanol,1ml spiked onto filter paper: 0, 0.0001,0.001, 0.01, 0.1 mg/cm²
- 1 earthworm per vial
- NRRT Analysis conducted from n=5 per treatment

Dermal Toxicity of DNAN/TNT

DNAN/TNT Bioaccumulation

Cellular Stress/NRRT

Two Methods of Measurement

Extract 50 ul from clitellum

Expose worm to GGE t= 2mins collect coelomocyte solution

1 row per worm/treatment, obtain measurements through spectrophotometer

- NRRT is a biomarker of cellular stress; viable cells stain red with dye
- Coelomic fluid extracted and analyzed in two different methods, 2nd method chosen for final study:
 - ▶ Coelomocytes collected in 2 ml Guaiacol Glyceryl Ether (GGE) solution, centrifuged, decanted, washed with 1X Phosphate Buffered Saline (PBS) and re-suspended in 1,500 ul PBS
 - Kinetic readings obtained from spectrophotometer every 5 minutes for 1 hour to determine neutral red retention time

Comparison of Total Cells and NRRT

Treatment
Group
mg/cm²
1=0.0001
2=0.001
3=0.01

DNAN & TNT Toxicity in Human Liver HEPG2 Cells

Soil Exposures

- Range Finder-(n=3, 10 worms per rep) determine lethal and non-lethal range of DNAN
- Sub-chronic 28 day studies (n=3, 10 worms per rep)
 comparatively assessed
 DNAN and TNT toxicity,
 bioaccumulation, and
 cellular stress through
 NRRT analysis
 - Soil studies provide multiple routes of exposure through dermal contact and ingestion

Materials and Methods: Soil Prep

- Field soil spiked with increasing concentrations of DNAN and TNT dissolved in methanol
 - ► Range Finder Concentration: 0-300 mg/kg
 - ▶ 28 Day Exposure Concentrations: 0-100 mg/kg
- Tumbled overnight, placed in test containers, hydrated to 85% WHC

Materials and Methods: Test Conditions

Earthworms depurated 24hours Adults 0.3-0.6 g

10 added per treatment n=3

Test conducted at 22°C, 80% humidity, continuous light

Endpoints: bioaccumulation, toxicity, growth, reproduction, NRRT

Results: DNAN Acute Range Finder

n=3, 10 per rep T=7 days

Sub Chronic 28-Day Exposure

TNT and DNAN tested concentrations: 0, 12.5, 25, 50, 100 mg/kg n=3, 10 per rep

Sub-Chronic Preliminary Results

Results: 28 Day Exposure NRRT

DNAN TNT

Computational Chemistry and Toxicity of DNAN

First stage of alkaline hydrolysis of 2,4-Dinitroanisole

- Initial exposures conducted with DNAN parent compound
- Additional exposures to be conducted with DNAN degradation product predicted by computational chemistry models
 - ➤TS (Transition State)
 - MC (anionicMeisenheimer complexes)
 - DS (direct substitution of nitro group w/phenol)

MC_21 TS_21 OH-TS₂₃ DS₂ TS 24 DS_24

2,4-dihydroxytoluene is highly dominating product because of low stability of competitive pathways adducts. However, its formation requires enormous amount of time.

Second stage of alkaline hydrolysis of 2,4-Dinitroanisole

We have considered attack of second hydroxyl anion on nitro phenol DS_2, formed on the first stage as a result of direct substitution.

<u>Transition states geometries</u>				<u>Products geometries</u>				
TS	Bond C–O, Å	Bond C–R (R=H,CH ₃), Å	□OCR	TS	Bond C–O, Å	Bond C–R (R=H,CH ₃), Å	□OCR	
TS_21	2.096	1.380	95.584	MC_21	1.485	1.465	103.631	
TS_23	2.012	1.085	88.177	MC_23	1.514	1.099	105.804	
TS_24	1.748	1.605	93.154	DS_24	1.395	_ -	-	

* For bonds: first column is bond length in Å, second column is Wiberg index of bond order

Reaction thermo chemistry

Activation parameters			<u>Products parameters</u>						
Reaction	ΔE, kcal/mol	ΔH, kcal/mol	ΔG, kcal/mol	ΔS, cal/mol*K	Product	ΔE, kcal/mol	ΔH, kcal/mol	ΔG, kcal/mol	ΔS, cal/mol*K
TS_21	13.74	13.53	20.79	-24.38	MC_21	6.08	5.84	13.06	-24.24
TS_23	15.65	15.49	22.47	-23.42	MC_23	11.46	11.18	18.47	-24.43
TS_24	29.48	29.37	36.12	-22.66	DS_24	-30.31	-30.78	-35.25	16.97

Kinetics simulations

Future Direction of Project

Determine toxicity of predicted breakdown product in terrestrial systems

Overview: Results/Findings

- DNAN resulted in <u>lower toxicity</u> to relative to TNT compounds in *E. fetida* exposures
- Two methods tested for NRRT analysis; kinetic readings obtained from spectrophotometer found to be <u>less variable</u>
- Better definition of link between computational chemistry and toxicology as it relates to munitions
- Information previously unavailable on the bioavailability and toxicity of DNAN to terrestrial organisms
- Data obtained from our exposures will <u>benefit the Army</u> by reducing uncertainty about the environmental effects of DNAN; therefore, <u>reducing cost</u> associated with unnecessary site remediation.

US Army Engineer Environmental Laboratory, Vicksburg, MS,

Contact Information:

Jessica.g.coleman@us.army.mil

601-634-3976

